Accuracy and Error Analysis

Recall the idea of *significant digits*:

3.00 x 10 ⁸ m/s:	s.d.	0.0004 kg:	s.d.
123 h:	s.d.	456.000 W:	s.d.

Also recall the rules for addition and subtraction of measured quantities:

× and ÷ : round to the fewest number of *Example: A soccer field was measured to be 85.05 m long and 36 m wide. What is the area of the field?*

combinations: round _____

If I was to measure the length of my Rolls-Royce convertible at 4.6 m, the *possible error* would be ± 0.05 m – half the last digit stated.

You know that the *accepted value* for the speed of light is 3.00×10^8 m/s. If you were to conduct an experiment to measure the speed of light and you found it to be 2.83×10^8 m/s...

absolute error = (your measured value) - (commonly-accepted value)

What would your absolute error be for this experiment?

While your absolute error may seem big, it really isn't all that bad when you calculate...

percentage error = $\frac{\text{absolute error}}{\text{accepted value}} \times 100\%$

What would your percentage error be for this experiment?

SPH4U

Carrying Errors

Addition and Subtraction:add $\underline{absolute}$ errors (or uncertainties)Example: What would be the sum of 6.8 ± 0.05 m and 3.04 ± 0.008 m? The difference?

Multiplication and Division: add <u>percentage</u> errors Example: If a car travels at 85 ± 0.6 km/h for 0.75 ± 0.01 h, how far does it travel?

Square root of a measured number: double the percentage error

Activity: Using Accuracy and Error Analysis

- Purpose: To determine your reaction time, and report the measurement using correct accuracy and error analysis.
- Method:
- 1. Place your thumb and index finger 10 cm apart.
- 2. Get a partner to hold a metre stick so that the zero mark is between your fingers.
- 3. Have your partner release the metre stick, and catch it as soon as you can.
- 4. Record the "final" position, in *centimetres* (e.g. 27 ± 0.5 cm)

Calculations: Assuming that the acceleration due to gravity $g = 980 \pm 20 \text{ cm} \cdot \text{s}^{-2}$, calculate how long the metre stick fell before you were able to catch it.

- Use the formula $t = (2d/g)^{\frac{1}{2}}$
- Solute or percentage error properly.

Neat stuff: See who has the faster reaction time, you or your partner

Try starting with your fingers 8, 6, and 4 cm apart, and derive a mathematical relationship between reaction time and finger spacing.